A Survey of Equal Sums of Like Powers

By L. J. Lander, T. R. Parkin and J. L. Selfridge

Introduction. The Diophantine equation

$$
\begin{equation*}
x_{1}^{k}+x_{2}^{k}+\cdots+x_{m}^{k}=y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}, \quad 1 \leq m \leq n \tag{1}
\end{equation*}
$$

has been studied by numerous mathematicians for many years and by various methods [1], [2]. We recently conducted a series of computer searches using the CDC 6600 to identify the sets of parameters k, m, n for which solutions exist and to find the least solutions for certain sets. This paper outlines the results of the computation, notes some previously published results, and concludes with a table showing, for various values of k and m, the least n for which a solution to (1) is known.

We restrict our attention to $k \leq 10$. We assume that the x_{i} and y_{j} are positive integers and $x_{i} \neq y_{j}$. We do not distinguish between solutions which differ only in that the x_{i} or y_{j} are rearranged. We will refer to (1) as (k.m.n) and say that a primitive solution to ($k . m . n$) is one in which no integer >1 divides all the numbers $x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{n}$. Putting

$$
z=\sum_{1}^{m} x_{i}{ }^{k}=\sum_{1}^{n} y_{j}{ }^{k},
$$

we order the primitive solutions according to the magnitude of z and denote the r th primitive solution to $(k . m . n)$ by $(k . m . n)_{r}$. Where we refer to the range covered in a search for solutions, we mean the upper limit on z. The notation $\left(x_{1}, x_{2}, \cdots, x_{m}\right)^{k}$ $=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{k}$ means $\sum_{1}^{m} x_{i}{ }^{k}=\sum_{1}^{n} y_{j}{ }^{k}$. Any parametric solution discussed does not include all solutions unless otherwise stated.

Squares and Cubes. For $k=2$ the general solution of the Pythagorean equation (2. 1.2) is well known [3]. Many solutions in small integers and various parametric solutions have been given for (2.1.n) with $n \geq 3$. The general solution of (2.2.2) is known [4]. Solutions to (2.2.n) with $n \geq 3$ and (2.m.n) with $m \geq 3$ are numerous.

The impossibility of solving ($k .1 .2$) with $k \geq 3$ is Fermat's last theorem, which has been established for $k \leq 25000$ [5]. The general solution of (3.1.3) in rationals is attributed to Euler and Vieta [6] and also produces all solutions to (3.2.2) if the arguments are properly chosen. There are many solutions in small integers and various parametric solutions to (3.1.n) with $n \geq 4$ and to (3.m.n) with $m \geq 2$ [7].

Fourth Powers.

(4. 1. n)-For $n=3$, no solution is known. M. Ward [8] developed congruential constraints which, together with some hand computing, allowed him to show that $x^{4}=y_{1}{ }^{4}+y_{2}{ }^{4}+y_{3}{ }^{4}$ has no solution if $x \leq 10,000$. The authors extended the search on the computer using a similar method and verified that there is no solution for $x \leq 220,000$. Ward showed that if $x^{4}=y_{1}{ }^{4}+y_{2}{ }^{4}+y_{3}{ }^{4}$ is a primitive solution, it may be assumed that $x, y_{1} \equiv 1(\bmod 2), y_{2}, y_{3} \equiv 0(\bmod 8)$ and either $x-y_{1}$ or $x+y_{1}$
is $\equiv 0(\bmod 1024)$. Also $x \neq 0(\bmod 5)$ or else all y_{i} would be $\equiv 0(\bmod 5)$ since u^{4} $\equiv 0$ or 1 according as $u \equiv 0$ or $u \not \equiv 0(\bmod 5)$. The computer program generated all numbers $M=\left(x^{4}-y_{1}^{4}\right) / 2048$ with $0<y_{1}<x, x$ prime to 10 and $y_{1} \equiv \pm x(\bmod$ 1024). Tests were applied to $M=\left(y_{2} / 8\right)^{4}+\left(y_{3} / 8\right)^{4}$ to reject cases in which a solution would not be primitive or M could not be the sum of two biquadrates. If M passed all the tests, its decomposition was attempted by trial using addition of entries in a stored table of biquadrates (27500 entries for $x \leq 220,000=8 \cdot 27500$). The tests were:
(1) M must be $\equiv 0,1$ or $2(\bmod 16)$ and $(\bmod 5)$;
(2) M must not be $\equiv 7,8$ or $11(\bmod 13)$ and must not be $\equiv 4,5,6,9,13,22$ or $28(\bmod 29)$;
(3) x and y_{1} must not both be divisible by an odd prime $p \equiv 3,5$ or $7(\bmod 8)$ for if so, p^{4} divides M, p divides y_{2} and y_{3} and the solution is not primitive;
(4) M must not have a factor p where p is an odd prime not $\equiv 1(\bmod 8)$ unless p^{4} also divides M. In this case p divides y^{2} and y^{3}, and in the decomposition by trial M can be replaced by M / p^{4} (here tests were made only for $p<100$).

Of approximately $19,200,000$ initial values of M, only 22,400 required the trial decomposition.

Table I
Primitive solutions of (4. 1. 4) for $z \leq(8002)^{4}$ $z=x_{1}{ }^{4}=\sum_{1}^{4} y_{j}{ }^{4}$

i	x_{1}	y_{1}	y_{2}	y_{3}	y_{4}	Ref.
1	353	30	120	272	315	[9]
2	651	240	340	430	599	[34]
3	2487	435	710	1384	2420	[10]
4	2501	1130	1190	1432	2365	[10]
5	2829	850	1010	1546	2745	[10]
6	3723	2270	2345	2460	3152	[10]
7	3973	350	1652	3230	3395	[10]
8	4267	205	1060	2650	4094	[10]
9	4333	1394	1750	3545	3670	
10	4449	699	700	2840	4250	
11	4949	380	1660	1880	4907	
12	5281	1000	1120	3233	5080	
13	5463	410	1412	3910	5055	
14	5491	955	1770	2634	5400	[11]
15	5543	30	1680	3043	5400	
16	5729	1354	1810	4355	5150	
17	6167	542	2770	4280	5695	
18	6609	50	885	5000	5984	
19	6801	1490	3468	4790	6185	
20	7101	1390	2850	5365	6368	
21	7209	160	1345	2790	7166	
22	7339	800	3052	5440	6635	
23	7703	2230	3196	5620	6995	

For $n=4$, R. Norrie [9] found the smallest solution $(353)^{4}=(30,120,272,315)^{4}$. J. O. Patterson [34] found (4.1.4) ${ }_{2}$ and J. Leech [10] found the next 6 primitive solutions on the EDSAC 2 computer. S. Brudno [11] gave another primitive solution, the 14 th in our Table I. The authors exhaustively searched the range 8002^{4} using Leech's method finding in all the 23 primitives listed in Table I. No parametric solution has been found for (4.1.4) although the general solution is known for (3.1.3) and a parametric solution (discussed later) is known for (5. 1. 5).

Table II
Primitive solutions of (4.2.2) for $7.5 \times 10^{15} \leq z \leq 5.3 \times 10^{16}$
$z=x_{1}{ }^{4}+x_{2}{ }^{4}=y_{1}{ }^{4}+y_{2}{ }^{4}$

* For solutions to (4.2.2) for $i=1$ to 31 see Lander and Parkin [18].
** This solution was found by Euler [37].
For $n \geq 5$ there exist many solutions in small integers. (4.1.5) $)_{1}$ is $(5)^{4}=$ $(2,2,3,4,4)^{4}$. Several parametric solutions to (4. 1.5) are known due to E. Fauquembergue [12], C. Haldeman [13], and A. Martin [14].
(4.2.n)-For $n=2$ the least solution is $(59,158)^{4}=(133,134)^{4}$. Euler [15] gave a two-parameter solution and A. Gérardin [16] gave an equivalent but simpler form of this solution. Several of the smaller primitive solutions were found by Euler, A.

Werebrusow, and Leech [17] and a recent computer search by Lander and Parkin [18] extended the list of known primitives to 31. More recently we have increased this to a total of 46 primitives by a complete search of the range 5.3×10^{16} and the 15 new primitives are listed in Table II. The general solution is not known.

For $n \geq 3$ there are many small solutions. (4.2.3) is $(7,7)^{4}=(3,5,8)^{4}$. Several parametric solutions are known for (4.2.3) due to Gérardin [19] and F. Ferrari [20].
(4. m.n)-For $m \geq 3$, solutions in small integers are numerous. Parametric solutions to (4.3.3) were given by Gérardin [21] and Werebrusow [22]. (4.3.3) ${ }_{1}$ is $(2,4,7)^{4}=(3,6,6)^{4}$.

Fifth Powers.

(5. 1. n)-For $n=3$, no solution is known. Lander and Parkin [23], [24] found (5. 1. 4) $)_{1}$ to be $(144)^{5}=(27,84,110,133)^{5}$. This disproved Euler's conjecture [25] that ($k .1 . n$) has no solution if $1<n<k$. No further primitive solutions to (5.1.4) exist in the range up to 765^{5}.

For $n=5$, S. Sastry and S. Chowla [26] obtained a two-parameter solution yield-ing $(107)^{5}=(7,43,57,80,100)^{5}$ as its minimal primitive; this solution is $(5.1 .5)_{3}$. Lander and Parkin [24] found (5.1.5) ${ }_{1}$ and (5.1.5) $)_{2}$ to be $(72)^{5}=(19,43,46,47,67)^{5}$ and $(94)^{5}=(21,23,37,79,84)^{5}$. More recently we searched the range up to 599^{5} and found in all the twelve primitive solutions given in Table III.

Table III
Primitive solutions of (5. 1. 5) for $z \leq 599^{5}$

$$
z=x_{1}{ }^{5}=\sum_{1}^{5} y_{j}^{5}
$$

i	x_{1}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	Ref.
1	72	19	43	46	47	67	$[24]$
2	94	21	23	37	79	84	$[24]$
3	107	7	43	57	80	100	$[26]$
4	365	78	120	191	259	347	
5	415	79	202	258	261	395	
6	427	4	26	139	296	412	
7	435	31	105	139	314	416	
8	480	54	91	101	404	430	
9	503	19	201	347	388	448	
10	530	159	172	200	356	513	
11	553	218	276	385	409	495	
12	575	2	298	351	474	500	

For $n \geq 6$ there are solutions in moderately small integers. (5.1.6) $)_{1}$ is $(12)^{5}=$ $(4,5,6,7,9,11)^{5}$ found by A. Martin [27]. The first eight primitive solutions to (5. 1. 6) are given in [24]. (5.1.7) $)_{1}$ is $(23)^{5}=(1,7,8,14,15,18,20)^{5}$.
(5.2.n)-No solution is known for $n \leq 3$. An exhaustive search by the authors verified that there is no solution to (5.2.2) in the range up to 2.8×10^{14} or to (5.2.3) in the range up to 8×10^{12}. Sastry's parametric solution for (5.1.5) mentioned above gives for certain values of its arguments solutions to (5.2.4), the smallest being $(12,38)^{5}=(5,13,25,37)^{5}$ which is (5.2.4) . K. Subba Rao [28] found $(3,29)^{5}=(4,10,20,28)^{5}$ which is $(5.2 .4)_{1}$. Table IV lists the ten primitives which exist in the range up to 2×10^{10}.

Table IV
Primitive solutions of (5. 2. 4) for $z \leq 2 \times 10^{10}$

$$
z=\sum_{1}^{2} x_{j}{ }^{5}=\sum_{1}^{4} y_{j}{ }^{5}
$$

i	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}	y_{4}	z	Ref.
1	3	29	4	10	20	28	20511392	$[28]$
2	12	38	5	13	25	37	79484000	$[26]$
3	28	52	26	29	35	50	397414400	
4	61	64	5	25	62	63	1918338125	
5	16	85	6	50	53	82	4438101701	
6	31	96	56	63	72	86	8182356127	
7	14	99	44	58	67	94	9510438323	
8	63	97	11	13	37	99	9579776800	
9	25	106	48	57	76	100	13392021401	
10	54	111	58	76	79	102	17309746575	

For $n \geq 5$ there are solutions in moderately small integers; (5.2.5) $)_{1}$ is $(1,22)^{5}=$ $(4,5,7,16,21)^{5}$ due to Subba Rao [28]. We give the first six primitives for (5.2.5) in Table V.
(5. 3. n)—The first solution known for $n=3$ was $(49,75,107)^{5}=(39,92,100)^{5}$ due to A. Moessner [35]; this is (5.3.3) ${ }_{5}$. H. P. F. Swinnerton-Dyer gave two separate two-parameter solutions [36]. We give the 45 primitives in the range up to $8 \times$ 10^{12} in Table VI. For $n \geq 4$, solutions in small integers are plentiful. (5.3.4) $)_{1}$ is $(3,22,25)^{5}=(1,8,14,27)^{5}$ due to Subba Rao [28]. A two-parameter solution to (5. 3. 4) was given by G. Xeroudakes and A. Moessner [29].
(5. m. n)-If $m \geq 4$, there are many solutions in small integers. (5. 4. 4) $)_{1}$ is $(5,6,6,8)^{5}=(4,7,7,7)^{5}$ due to Subba Rao [28]. Several parametric solutions to (5.4.4) were found by Xeroudakes and Moessner [29]. The first triple coincidence of four fifth powers is $1479604544=(3,48,52,61)^{5}=(13,36,51,64)^{5}=(18,36,44,66)^{5}$.

In the subsequent discussion we adopt a notation borrowed from the field of partitions, writing x^{r} to signify the term x repeated r times in the expression in which it appears. Table VII uses this notation, giving $(k . m . n)_{1}$ where known and references solutions in other tables. Table VII also shows for certain (k.m.n) the range which has been searched on the computer exhaustively.

For the remainder of the equations ($k . m . n$) which are discussed we note in the text only the limits searched, interesting features, and methods employed; specific solutions are given in Table VII.

Sixth Powers.

(6.1. n)-No solution is known for $n \leq 6$. We consider the cases of $n=6,7$ and 8 in descending order. To solve (6.1.8), $x^{6}=\sum_{1}^{8} y_{i}{ }^{6}$, note that $u^{6} \equiv 0$ or $1(\bmod 9)$ according as $u \equiv 0$ or $u \not \equiv 0(\bmod 3)$. Then if $x \equiv 0(\bmod 3)$, all $y_{i} \equiv 0(\bmod 3)$ and the solution is not primitive. Therefore take x and exactly one of the y_{i} (say y_{1}) prime to 3 . Then $\left(x^{6}-y_{1}{ }^{6}\right) / 3^{6}=\sum_{2}^{8}\left(y_{i} / 3\right)^{6}$ is an integer (which is true if and only if $y_{1} \equiv$ $\pm x(\bmod 243))$ to be decomposed by trial as the sum of 7 sixth powers. In Table VIII we give the 14 smallest primitives found by this method; $(6.1 .8)_{1}$ is $(251)^{6}=$ $(8,12,30,78,102,138,165,246)^{6}$.

Table V
Primitive solutions of (5. 2. 5) for $z \leq 2.8 \times 10^{8}$
$z=\sum_{1}^{2} x_{j}{ }^{5}=\sum_{1}^{5} y_{j}{ }^{5}$

i	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	z
$* 1$	1	22	4	5	7	16	21	5153633
2	23	29	9	11	14	18	30	26947492
3	16	38	10	14	26	31	33	80283744
4	24	42	4	22	29	35	36	138653856
5	30	44	8	15	17	19	45	189216224
6	36	42	5	6	26	27	44	191157408

* The first solution is due to Subba Rao [28].

For (6.1.7), $x^{6}=\sum_{1}{ }^{7} y_{i}{ }^{6}$, note that $u^{6} \equiv 0$ or $1(\bmod 8)$ according as u is even or odd. Then for a primitive solution, x and exactly one of the y_{i} are odd. The argument for (6.1 .8) modulo 9 applies and x is prime to $6, y_{1}$ (say) is prime to 3 , and either y_{1} is odd or another y (say y_{2}), is odd. In the first case $y_{1} \equiv \pm x(\bmod 243)$ and $(\bmod 32)$ and $\left(x^{6}-y_{1}{ }^{6}\right) / 6^{6}=\sum_{2}^{7}\left(y_{i} / 6\right)^{6}$ is an integer to be decomposed by trial as the sum of 6 sixth powers. In the second case $y_{1} \equiv \pm x(\bmod 243), y_{2} \equiv \pm x(\bmod$ 32) and ($\left.x^{6}-y_{1}{ }^{6}-y_{2}{ }^{6}\right) / 6^{6}=\sum_{3}^{7}\left(y_{i} / 6\right)^{6}$ must be an integer (certain combinations x, y_{1}, y_{2} satisfying the congruences are rejected) which is decomposed by trial as the sum of 5 sixth powers. The only solution for $x \leq 1536$ is (6.1.7) $)_{1},(1141)^{6}=$ $(74,234,402,474,702,894,1077)^{6}$ which is obtained in the second case.

Table VI
Primitive solutions of (5.3.3) for $z \leq 8 \times 10^{12}$

$$
z=\sum_{1}^{3} x_{j}{ }^{5}=\sum_{1}^{3} y_{j}{ }^{5}
$$

i	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	z
1	24	28	67	3	54	62	1375298099
2	18	44	66	13	51	64	1419138368
3	21	43	74	8	62	68	2370099168
4	56	67	83	53	72	81	5839897526
*5	49	75	107	39	92	100	16681039431
6	26	85	118	53	90	116	27326512069
7	38	47	123	1	89	118	28461637018
8	73	96	119	68	106	114	34090335168
9	39	56	136	3	97	131	47166830151
10	13	35	142	17	95	138	57788232400
11	28	32	155	91	94	150	89516861675
12	65	94	152	42	129	140	89636142881
13	63	67	169	9	131	159	140201053499
14	68	137	170	36	140	169	191701358025
15	43	109	181	13	159	161	209797492893
16	74	113	182	61	129	179	220333644849
17	39	142	186	28	167	172	280445841607
18	44	55	201	18	152	190	328748601600
19	58	101	204	113	145	195	364472314293
20	18	31	215	10	183	191	459431903094
21	19	168	216	11	183	209	604015282243
22	5	145	224	153	157	214	628046682374
23	27	106	229	12	122	228	643159996832
24	151	166	233	126	208	216	891271882720
25	59	139	248	23	184	239	990723788966
26	157	193	234	147	218	219	1064757548174
27	2	97	258	35	125	257	1151724993057
28	3	121	264	163	185	250	1308325982668
29	97	181	274	67	227	258	1747226767782
30	99	105	286	30	179	281	1935780202300
31	132	154	283	80	219	270	1941923897099
32	106	137	288	201	219	261	2042999635401
33	40	168	289	3	215	279	2149924122017
34	136	158	294	71	249	268	2341519215168
35	193	229	282	179	259	266	2680935350774
36	107	229	293	93	259	277	2803213794149
37	31	173	307	7	201	303	2882034839551
38	102	118	310	49	270	271	2896833485600
39	116	124	310	21	235	294	2913234767200
40	30	39	331	65	224	321	3973310334850
41	119	232	328	89	289	301	4492348861399
42	108	181	348	53	246	338	5312787753637
43	114	211	364	52	298	339	6827570513699
44	172	206	364	102	303	337	6911593515232
45	123	137	373	13	259	361	7296530514393

[^0]Table VII
(k.m.n) $)_{1}$ and summary of results

(k.m.n)	Range Searched	Solutions Known*
4. 1. 3	2.34×10^{21}	None known
4.1. 4	4.1×10^{15}	$(353)^{4}=(30,120,272,315)^{4}$
		See Table I, 23 solutions
4.1. 5		$(5)^{4}=\left(2^{2}, 3,4^{2}\right)^{4}$
4. 2. 2	5.3×10^{16}	$(59,158)^{4}=(133,134)^{4}$
4.2.3		See Table I in [18], and Table II, 46 solutions $\left(7^{2}\right)^{4}=(3,5,8)^{4}$
4. 3. 3		$(2,4,7)^{4}=\left(3,6^{2}\right)^{4}$
5.1. 3	2.6×10^{14}	None known
5.1. 4	2.6×10^{14}	$(144)^{5}=(27,84,110,133)^{5}$
5.1. 5	7.7×10^{13}	$(72)^{5}=(19,43,46,47,67)^{5}$
		See Table III, 12 solutions
5.1.6		$(12)^{5}=(4,5,6,7,9,11)^{5}$
5.1. 7		$(23)^{5}=(1,7,8,14,15,18,20)^{5}$
5. 2. 2	2.8×10^{14}	None known
5.2. 3	8×10^{12}	None known
5.2. 4	2×10^{10}	$(3,29)^{5}=(4,10,20,28)^{5}$
		See Table IV, 10 solutions
5. 2.5	2×10^{8}	$(1,22)^{5}=(4,5,7,16,21)^{5}$
		See Table V, 6 solutions
5.3.3	8×10^{12}	$(24,28,67)^{5}=(3,54,62)^{5}$
		See Table VI, 45 solutions
5. 3.4		$(3,22,25)^{5}=(1,8,14,27)^{5}$
5. 4. 4		$\left(5,6^{2}, 8\right)^{5}=\left(4,7^{3}\right)^{5}$
6.1. n	3.16×10^{27}	None known for $n \leq 6$
6.1. 7	1.3×10^{19}	$(1141)^{6}=(74,234,402,474,702,894,1077)^{6}$
6.1.8	5.8×10^{16}	$(251)^{6}=(8,12,30,78,102,138,165,246)^{6}$ See Table VIII, 14 solutions
6.1.9		See Table VIII, 14 solutions $(54)^{6}=\left(1,17,19,22,31,37^{2}, 41,49\right)^{6}$
6.1. 10		$(39)^{6}=\left(2,4,7,14,16,26^{2}, 30,32^{2}\right)^{6}$
6. 1. 11		$(18)^{6}=\left(2,5^{3}, 7^{2}, 9^{2}, 10,14,17\right)^{6}$
6.2.n	4×10^{12}	None known for $n \leq 6$
6.2. 7		$(56,91)^{6}=\left(18,22,36,58,69,78^{2}\right)^{6}$
6.2.8		$(35,37)^{6}=(8,10,12,15,24,30,33,36)^{6}$
6.2. 9		$(6,21)^{6}=\left(1,5^{2}, 7,13^{3}, 17,19\right)^{6}$
6. 2. 10		$\left(12^{2}\right)^{6}=\left(1^{3}, 4^{2}, 7,9,11^{3}\right)^{6}$
6.3.3	2.5×10^{14}	$(3,19,22)^{6}=(10,15,23)^{6}$
		See Table IX, 10 solutions
6.3.4	2.9×10^{12}	$(41,58,73)^{6}=(15,32,65,70)^{6}$
		See Table X, 5 solutions
6.4. 4		$\left(2^{2}, 9^{2}\right)^{6}=(3,5,6,10)^{6}$
7.1.n	1.95×10^{14}	None known for $n \leq 7$
7.1.8		$(102)^{7}=(12,35,53,58,64,83,85,90)^{7}$
7.1.9		$(62)^{7}=(6,14,20,22,27,33,41,50,59)^{7}$
7.2. 8		$(10,33)^{7}=\left(5,6,7,15^{2}, 20,28,31\right)^{7}$
7.3. 7		$\left(26,30^{2}\right)^{7}=\left(7^{2}, 12,16,27,28,31\right)^{7}$
7.4. 5		$(12,16,43,50)^{7}=(3,11,26,29,52)^{7}$
7.5.5		$\left(8^{2}, 13,16,19\right)^{7}=(2,12,15,17,18)^{7}$
		See Table XI, 17 solutions

[^1]
Table VII (cont.)

	Range	Selutions Known

7. 6.6
8. 9. 11
1. 2. 12
1. 2. 9
1. 3. 8
1. 4. 7
1. 5.5
2. 6.6
3. 7.7
4. 8. 8
9.1. 15
1. 2. 12
1. 3. 11
1. 4.10
2. 5. 11
1. 6.6
2. 3. 23
1. 2. 19
1. 3. 24
1. 4 . 23
2. 5. 16
1. 6. 27
*10. 7.7

$\left(2,3,6^{2}, 10,13\right)^{7}=\left(1^{2}, 7^{2}, 12^{2}\right)^{7}$
$(125)^{8}=\left(14,18,44^{2}, 66,70,92,93,96,106,112\right)^{8}$
$(65)^{8}=\left(8^{2}, 10,24^{3}, 26,30,34,44,52,63\right)^{8}$
$(11,27)^{8}=(2,7,8$
$(8,17,50)^{8}=\left(6,12,16^{2}, 38^{2}, 40,47\right)^{8}$
$(6,11,20,35)^{8}=\left(7,9,16,22^{2}, 28,34\right)^{8}$
$(1,10,11,20,43)^{8}=(5,28,32,35,41)^{8}$
$(3,6,8,10,15,23)^{8}=\left(5,9^{2}, 12,20,22\right)^{8}$
$\left(1,3,5,6^{2}, 8,13\right)^{8}=\left(4,7,9^{2}, 10,11,12\right)^{8}$
$\left(1,3,7^{3}, 10^{2}, 12\right)^{8}=\left(4,5^{2}, 6^{2}, 11^{3}\right)^{8}$
$(26)^{9}=\left(2^{2}, 4,6^{2}, 7,9^{2}, 10,15,18,21^{2}, 23^{2}\right)^{9}$
$(15,21)^{9}=\left(2^{4}, 3^{2}, 4,7,16,17,19^{2}\right)^{9}$
$(13,16,30)^{9}=\left(2,3,6,7,9^{2}, 19^{2}, 21,25,29\right)^{9}$
$(5,12,16,21)^{9}=\left(2,6^{2}, 9,10,11,14,18,19^{2}\right)^{9}$
$(7,8,14,20,22)^{9}=\left(3,5^{2}, 9^{2}, 12,15^{2}, 16,21^{2}\right)$
$\left(1,13^{2}, 14,18,23\right)^{9}=(5,9,10,15,21,22)^{9}$
$(15)^{10}=\left(1^{5}, 2,3,6,7^{6}, 9^{4}, 10,12^{2}, 13,14\right)^{10}$
$(9,17)^{10}=\left(2^{5}, 5,6,10,11^{6}, 12^{2}, 15^{3}\right)^{10}$
$\left(11,15^{2}\right)^{10}=\left(1,2,3,4^{10}, 7,8^{7}, 10,12,16\right)^{10}$
$\left(11^{3}, 16\right)^{10}=\left(1^{5}, 2^{2}, 3^{2}, 4,6^{4}, 7^{3}, 8,10^{2}, 14^{2}, 15\right)^{10}$
$\left(3^{2}, 8,14,16\right)^{10}=\left(1^{4}, 2,4^{2}, 6,12^{2}, 13^{5}, 15\right)^{10}$
$\left(2^{2}, 8,11,12^{2}\right)^{10}=\left(1,3^{4}, 4^{2}, 5^{2}, 6^{7}, 7^{9}, 10,13\right)^{10}$
$\underset{(1,28,31,32,55,61,68)^{10}}{(10}=(17,20,23,44,49,64 \text {, }$

$\left(2,3,6^{2}, 10,13\right)^{7}=\left(1^{2}, 7^{2}, 12^{2}\right)$
$=\left(14,18,44^{2}, 66,70,92,93,96,106,112\right)^{8}$
$(11,27)^{8}=\left(2,7,8,16,17,20^{2}, 24^{2}\right)^{8}$
$(8,17,50)^{8}=\left(6,12,16^{2}, 38^{2}, 40,47\right)^{8}$
$(6,11,20,35)^{8}=\left(7,9,16,22^{2}, 28,34\right)^{8}$
$(1,10,11,20,43)^{8}=(5,28,32,35,41)^{8}$
$(3,6,8,10,15,23)^{8}=\left(5,9^{2}, 12,20,22\right)^{8}$
$\left(1,3,5,6^{2}, 8,13\right)^{8}=\left(4,7,9^{2}, 10,11,12\right)^{8}$
$\left(1,3,7,10^{2}, 12\right)=\left(4,5^{2}, 6^{2}, 11\right)$
$(15,21)^{9}=\left(2^{4}, 3^{2}, 4,7,16,17,19^{2}\right)^{9}$
$(13,16,30)^{9}=\left(2,3,6,7,9^{2}, 19^{2}, 21,25,29\right)^{9}$
$(5,12,16,21)^{9}=\left(2,6^{2}, 9,10,11,14,18,19^{2}\right)^{9}$
$(7,8,14,20,22)^{9}=\left(3,5^{2}, 9^{2}, 12,15^{2}, 16,21^{2}\right)^{9}$
$\left(1,13^{2}, 14,18,23\right)^{9}=(5,9,10,15,21,22)^{9}$
$(15)^{10}=\left(1^{5}, 2,3,6,7^{6}, 9^{4}, 10,12^{2}, 13,14\right)^{10}$
$(9,17)^{10}=\left(2^{5}, 5,6,10,11^{6}, 12^{2}, 15^{3}\right)^{10}$
$\left(11,15^{2}\right)^{10}=\left(1,2,3,4^{10}, 7,8^{7}, 10,12,16\right)^{10}$
$\left(11^{3}, 16\right)^{10}=\left(1^{5}, 2^{2}, 3^{2}, 4,6^{4}, 7^{3}, 8,10^{2}, 14^{2}, 15\right)^{10}$
$\left(3^{2}, 8,14,16\right)^{10}=\left(1^{4}, 2,4^{2}, 6,12^{2}, 13^{5}, 15\right)^{10}$
$\left(2^{2}, 8,11,12^{2}\right)^{10}=\left(1,3^{4}, 4^{2}, 5^{2}, 6^{7}, 7^{9}, 10,13\right)^{10}$
$67)^{10}$

* Moessner [35]; not known to be (10.7.7) .

For (6. 1. 6), $x^{6}=\sum_{1}^{6} y_{i}{ }^{6}$ note that $u^{6} \equiv 0$ or $1(\bmod 7)$ according as $u \equiv 0$ or $u \not \equiv 0(\bmod 7)$. Then for a primitive solution, x and exactly one of the $y_{i}\left(\operatorname{say} y_{1}\right)$ are prime to 7 . This implies $y_{1} \equiv \pm x, \pm q x$ or $\pm q^{2} x$ where $q=34968$ is a primitive sixth root of unity $\left(\bmod 7^{6}=117649\right)$. Now the foregoing arguments modulo 8 and modulo 9 apply, and there are five cases.
(1) If $y_{1} \equiv \pm 1(\bmod 6)$ then $y_{1} \equiv \pm x(\bmod 243)$ and $(\bmod 32)$ and $\left(x^{6}-y_{1}{ }^{6}\right) / 42^{6}$ $=\sum_{2}^{6}\left(y_{i} / 42\right)^{6}$ is an integer to be decomposed by trial as the sum of 5 sixth powers.
(2) If $y_{1} \equiv \pm 2(\bmod 6)$ then $y_{1} \equiv \pm x(\bmod 243)$ and another of the $y_{i}\left(\operatorname{say} y_{2}\right)$, is odd. Then $y_{2} \equiv 0(\bmod 3 \cdot 7), y_{2} \equiv \pm x(\bmod 32)$, and $\left(x^{6}-y_{1}{ }^{6}-y_{2}{ }^{6}\right) / 42^{6}=$ $\sum_{3}^{6}\left(y_{i} / 42\right)^{6}$ is the sum of 4 integral sixth powers.
(3) If $y_{1} \equiv 3(\bmod 6)$ then $y_{1} \equiv \pm x(\bmod 32)$ and another of the $y_{i}\left(\right.$ say $\left.y_{2}\right)$, is prime to $3, y_{2} \equiv 0(\bmod 2 \cdot 7)$, and $y_{2} \equiv \pm x(\bmod 243)$. In case $(2),\left(x^{6}-y_{1}{ }^{6}-y_{2}{ }^{6}\right) / 42^{6}$ is an integer and is the sum of 4 sixth powers.
(4) If $y_{1} \equiv 0(\bmod 6)$, another of the $y_{i}\left(\operatorname{say} y_{2}\right)$, is prime to $3, y_{2} \equiv 0(\bmod 7)$ and $y_{2} \equiv \pm x(\bmod 243)$. If y_{2} is odd, then $y_{2} \equiv \pm x(\bmod 32)$ and as in cases (2) and (3) $\left(x^{6}-y_{1}{ }^{6}-y_{2}{ }^{6}\right) / 42^{6}$ is the sum of 4 sixth powers. If y_{2} is even, we have case (5).
(5) Another of the $y_{i}\left(\right.$ say $\left.y_{3}\right)$, is odd, $y_{3} \equiv 0(\bmod 3 \cdot 7), y_{3} \equiv \pm x(\bmod 32)$, and $\left(x^{6}-y_{1}{ }^{6}-y_{2}{ }^{6}-y_{3}{ }^{6}\right) / 42^{6}=\sum_{4}^{6}\left(y_{i} / 42\right)^{6}$ is an integer to be decomposed as the sum of 3 sixth powers.

The search for a solution to (6. 1. 6) was carried exhaustively by this method through the range $x \leq 38314$ and there is no solution in this range.
A. Martin [30] gave a solution to (6. 1. 16); Moessner [31] gave solutions to (6. 1. n) for $n=16,18,20$ and 23 . For $n \geq 11$, it is not difficult to find solutions in small integers.

Table VIII
Primitive Solutions of (6. 1. 8) for $z \leq 7 \times 10^{16}$

$$
z=x_{1}{ }^{6}=\sum_{1}^{8} y_{i}{ }^{6}
$$

i	x_{1}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
1	251	8	12	30	78	102	138	165	246
2	431	48	111	156	186	188	228	240	426
3	440	93	93	195	197	303	303	303	411
4	440	219	255	261	267	289	351	351	351
5	455	12	66	138	174	212	288	306	441
6	493	12	48	222	236	333	384	390	426
7	499	66	78	144	228	256	288	435	444
8	502	16	24	60	156	204	276	330	492
9	547	61	96	156	228	276	318	354	534
10	559	170	177	276	312	312	408	450	498
11	581	60	102	126	261	270	338	354	570
12	583	57	146	150	360	390	402	444	528
13	607	33	72	122	192	204	390	534	534
14	623	12	90	114	114	273	306	492	592

(6. 3. n)-Subba Rao [32] found the solution $(3,19,22)^{6}=(10,15,23)^{6}$ which is (6. 3. 3) ${ }_{1}$. In Table IX we give the remaining 9 primitive solutions which exist in the range up to 2.5×10^{14}. It is interesting to note that each of the solutions except the sixth is also a solution to (2.3.3). Table X gives the five primitive solutions to (6. 3. 4) which exist in the range up to 2.9×10^{12}.
(6. m. n)-If m is ≥ 4, solutions in small integers can be found readily. Subba Rao [32] gave (6.4.4) (see Table VII). The first triple coincidence of 4 sixth powers is $1885800643779=(1,34,49,111)^{6}=(7,43,69,110)^{6}=(18,25,77,109)^{6}$.

Seventh Powers.

$(7.2 .10)_{2}$ is $(2,27)^{7}=\left(4,8,13,14^{2}, 16,18,22,23^{2}\right)^{7}=\left(7^{2}, 9,13,14,18,20,22^{2}, 23\right)^{7}$ which is a double primitive and reduces to the solution (7.5.5) ${ }_{2}$.

Table IX
Primitive solutions of (6. 3. 3) for $z \leq 2.5 \times 10^{14}$ $z=\sum_{1}^{3} x_{j}{ }^{6}=\sum_{1} y_{j}{ }^{6}$

i	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	z
${ }^{*} 1$	3	19	22	10	15	23	160426514
2	36	37	67	15	52	65	95200890914
3	33	47	74	23	54	73	176277173474
4	32	43	81	3	55	80	289824641354
5	37	50	81	11	65	78	300620262890
6	25	62	138	82	92	135	6963806813393
7	51	113	136	40	125	129	8427066928346
8	71	92	147	1	132	133	10824753654794
9	111	121	230	26	169	225	153044731928882
10	75	142	245	14	163	243	224646509202194

* The first solution is due to K. Subba Rao [32].

Table X
Primitive solutions of (6. 3. 4) for $z \leq 2.9 \times 10^{12}$

$$
z=\sum_{1}^{3} x_{j}{ }^{6}=\sum_{1}^{4} y_{j}{ }^{6}
$$

i	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	z	
1	41	58	73	15	32	65	70	194153023074	
2	61	62	85	52	56	69	83	48	
54701	25570								
3	61	74	85	26	56	71	87	59	
4	28763	80162							
4	11	88	90	21	74	78	92	99	
5	26	83	95	23	24	28	101	106	

(7. 5. n)—Table XI lists the 17 primitive solutions to (7.5.5) which exist in the range up to 4.0×10^{12}.

Eighth Powers.

(8. 1. n)-We found a parametric solution to (8.1.17), $\left(2^{8 k+4}+1\right)^{8}=\left(2^{8 k+4}-1\right)^{8}$ $+\left(2^{7 k+4}\right)^{8}+\left(2^{k+1}\right)^{8}+7\left[\left(2^{5 k+3}\right)^{8}+\left(2^{3 k+2}\right)^{8}\right]$ which for $k=0$ yields (8.1.17) . This was the solution used by Sastry [26] in developing a parametric solution to (8. 8. 8). The computer program used in searching for solutions to (8.1.n) was based on the congruences $x^{8} \equiv 0$ or $1(\bmod 32)$ according as $x \equiv 0$ or $1(\bmod 2)$ so that primitive solutions to $x^{8}=\sum_{1}^{n} y_{j}^{8}$ with $n<32$ must have x and (say) y_{1} both odd. Then $x^{8}-$ $y_{1}{ }^{8}$ is divisible by 2^{8} which implies $x \equiv \pm y_{1}(\bmod 32)$, and $\left(x^{8}-y_{1}{ }^{8}\right) / 256$ is decomposed as the sum of $n-1$ eighth powers by trial.

Solutions to (8.5.5) and (8.9.9) were found by A. Letac [33].

Ninth and Tenth Powers. Computations performed by the authors for (9.m.n) and (10.m.n) are the basis for the data shown in the last two columns of Table XII,

Table XI
Primitive solutions of (7. 5. 5) for $z \leq 4.0 \times 10^{12}$

$$
z=\sum_{1}^{5} x_{j}{ }^{7}=\sum_{1}^{5} y_{j}{ }^{7}
$$

i	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{1}	y_{2}	y_{3}	y_{4}	y_{0}	z		
1	8	8	13	16	19	2	12	15	17	18		12292	50016
2	4	8	14	16	23	7	7	9	20	22		37807	87943
3	11	12	18	21	26	9	10	22	23	24	1	05004	37728
4	6	12	20	22	27	10	13	13	25	26	1	42708	22835
5	3	13	17	24	38	14	26	32	32	33	11	94751	43393
6	4	5	30	36	44	2	8	27	39	43		95120	68269
7	16	33	33	33	44	18	26	34	38	43		74015	74051
8	3	4	21	39	45	14	23	33	41	43	51	27015	66916
9	16	17	26	33	49	10	12	30	43	46		95521	00131
10	15	18	18	43	48	8	11	32	44	47		02822	52818
11	19	24	43	46	51	9	36	40	48	50	161	05272	89337
12	13	16	35	35	56	9	19	28	44	55	185	61046	27259
13	9	11	43	45	55	3	19	37	51	53	216	79475	68747
14	9	15	19	34	59	5	10	16	48	57	254	22443	49046
15	23	27	40	49	56	7	39	45	51	53		30231	01035
16	8	13	41	45	59	2	10	47	52	55	305	71400	57494
17	1	38	39	39	60	8	25	34	53	57	318	82375	95951

Table XII
Least n for which a solution to (k.m.n) is known

	k								
	2	3	4	5	6	7	8	9	10
1	2	3	4	4	7	8	11	15	23
2	2	2	2	4	7	8	9	12	19
3				3	3	7	8	11	24
4						5	7	10	23
5							5	11	16
6								6	27
7									

except for a solution to (10.7.7) given by A. Moessner [35]. Due to computer word length limitations the calculations were not extended to large values of the arguments.

Additional References. A. Gloden gave a parametric solution of (5. 4. 4) in [38], two parametric solutions of (7.5.5) in [39], [40], and a parametric solution of (8. 7. 7) in [41]. A. Moessner gave numerical solutions of (5.2.4) and (5.3.3) in [42]. In [43] Moessner gave three parametric solutions of (6.4.4) and parametric solutions of (8.7.7) and (9.10.10). Two numerical solutions of (7.4.5) due to A. Letac are found in [39]. S. Sastry and T. Rai solved (7. 6. 6) parametrically [44].
G. Palamà [45] gave numerical solutions of (9. 11. 11) and (11. 10. 12). In [46] Moessner and Gloden solved (8.6.6) and (8.6.7) numerically.

Concluding Remarks. Let $N(k, m)$ be the smallest n for which ($k . m . n$) is solvable. In Table XII we show the upper bound to N based on the results just presented. Each column is terminated when a solution to ($k . m . m$) has been found. It appears likely that whenever ($k . m . m$) is solvable, so is ($k . r . r$) for any $r>m$. Some questions are:
(a) Is $N(k, m+1) \leq N(k, m) \leq N(k+1, m)$ always true?
(b) Is (k.m.n) always solvable when $m+n>k$?
(c) Is it true that $(k . m . n)$ is never solvable when $m+n<k$?
(d) For which k, m, n such that $m+n=k$ is ($k . m . n$) solvable?

The results presented in this paper tend to support an affirmative answer to (c). Question (d) appears to be especially difficult. The only solvable cases with $m+n$ $=k$ known at present are (4.2.2), (5.1.4) and (6.3.3).

In this paper we have made a computational attack on the problem of finding a sum of $n k$ th powers which is also the sum of a smaller number of k th powers. In many of the cases considered, especially for the larger values of k, we have undoubtedly not obtained the best possible results, but the amount of computing needed to do this would seem to be overwhelming.

We believe that the main result of this paper is the presentation of results on a family of Diophantine equations which have largely been considered separately in the past. We hope that this presentation offers greater insight into the nature of the function $N(k, m)$ and that future efforts will be directed toward reducing the upper bounds for this function.

Aerospace Corporation
Los Angeles, California 90045
Aerospace Corporation
Los Angeles, California 90045
Pennsylvania State University
University Park, Pennsylvania 16802

1. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Clarendon Press, Oxford, 1954; 4th ed., pp. 332-335, Oxford Univ. Press, London, 1960. MR 16, 673.
2. L. E. Dickson, History of the Theory of Numbers, Vol. 2, chapters 4-9, 21-24, Publication No. 256, Carnegie Institution of Washington, Washington, D. C., 1920; reprint, Stechert, New York, 1934.
3. L. E. Dickson, ibid., pp. 165-170.
4. L. E. Dickson, ibid., p. 252.
5. J. L. Selfridge \& B. W. Pollack, Notices Amer. Math. Soc., no. 11, 1964, p. 97.
6. L. E. Dickson, loc. cit., pp. 550-554.
7. L. E. Dickson, loc. cit., pp. 563-565.
8. M. Ward, "Euler's problem on sums of three fourth powers," Duke Math J., v. 15, 1948, pp. 827-837. MR 10,283.
9. R. Norrie, University of St. Andrews 500th Anniversary Memorial Volume, Edinburgh, 1911, pp. 87-89.
10. J. Leech, "On $A^{4}+B^{4}+C^{4}+D^{4}=E^{4}$," Proc. Cambridge Philos. Soc., v. 54, 1958, pp. 554-555. MR 20 \# 2301.
11. S. Brudno, "A further example of $A^{4}+B^{4}+C^{4}+D^{4}=E^{4}$," Proc. Cambridge Philos. Soc., v. 60, 1964, pp. 1027-1028. MR 29 \#3429.
12. E. Fauquembergue, L'intermédiaire des Math., v. 5, 1898, p. 33.
13. C. Haldeman, Math. Mag., v. 2, 1904, pp. 288-296.
14. A. Martin, Deux. Congrès Internat. Math., 1900, Paris, 1902, pp. 239-248; reproduced with additions in Math. Mag., v. 2, 1910, pp. 324-352.
15. L. Euler, Nova Acta Acad. Petrop., 13, ad annos 1795-1796, 1802 (1778), 45; Comm. Arith., II, 281. Cited in L. E. Dickson, loc. cit., pp. 645-646.
16. A. Gérardin, L'intermédiaire des Math., v. 24, 1917, p; 51.
17. J. Leech, "Some solutions of Diophantine equations," Proc. Cambridge Philos. Soc., v. 53, 1957, pp. 778-780. MR 19, 837.
18. L. Lander \& T. Parkin, "Equal sums of biquadrates," Math. Comp., v. 20, 1966, pp. 450-451.
19. A. Gérardin, Assoc. frans., v. 39, 1910, I, pp. 44-55; same in Sphinx-Oedipe, v. 5, 1910, pp. 180-186; v. 6, 1911, pp. 3-6; v. 8, 1913, p. 119.
20. F. Ferrari, L'intermédiaire des Math., v. 20, 1913, pp. 105-106.
21. A. Gérardin, Bull. Soc. Philomathique, (10), v. 3, 1911, p. 236.
22. A. Werebrusow, L'intermédiaire des Math., v. 20, 1913, pp. 105-106.
23. L. Lander \& T. Parkin, "A counterexample to Euler's conjecture on like powers," Bull. Amer. Math. Soc., v. 72, 1966, p. 173.
24. L. Lander \& T. Parkin, "A counterexample to Euler's sum of powers conjecture," Math. Comp., v. 21, 1967, pp. 101-103.
25. L. E. Dickson, loc. cit., p. 648.
26. S. Sastry, "On sums of powers," J. London Math. Soc., v. 9, 1934, pp. 242-246.
27. A. Martin, Bull. Philos. Soc. Wash., v. 10, 1887, p. 107, in Smithsonian Miscel. Coll., v. 33, 1888.
28. K. Subba Rao, "On sums of fifth powers," J. London Math. Soc., v. 9, 1934, pp. 170-171.
29. G. Xeroudakes \& A. Moessner, 'On equal sums of like powers,"'Proc. Indian Acad. Sci. Sect. A, v. 48, 1958, pp. 245-255. MR 21 \#20.
30. A. Martin, Quart. J. Math., v. 26, 1893, pp. 225-227.
31. A. Moessner, "Einige zahlentheoretische Untersuchungen und diophantische Probleme," Glasnik Mat.-Fiz. Astronom. Drustvo Mat. Fiz. Hrvatske Ser. II, v. 14, 1959, pp. 177-182. MR 24 \#A2558.
32. K. Subba Rao, "On sums of sixth powers," loc. cit., pp. 172-173.
33. A. Letac, Gazeta Matematica, v. 48, 1942, pp. 68-69.
34. J. O. Patterson, "A note on the Diophantine problem of finding four biquadrates whose sum is a biquadrate," Bull. Amer. Math. Soc., v. 48, 1942, pp. 736-737. MR 4,33.
35. A. Moessner, "Einige numerische Identitäten," Proc. Indian Acad. Sci. Sect. A, v. 10, 1939, pp. 296-306. MR 1, 133.
36. H. P. F. Swinnerton-Dyer, "A solution of $A^{5}+B^{5}+C^{5}=D^{5}+E^{5}+F^{5}$," Proc. Cambridge Philos. Soc., v. 48, 1952, pp. 516-518. MR 13, 913.
37. L. E. Dickson, loc. cit., p. 644.
38. A. Gloden, "Über mehrgradige Gleichungen," Arch. Math., v. 1, 1949, pp. 482-483. MR 11, 82.
39. A. Gloden, "Sur la multigrade $A_{1} A_{2}, A_{3}, A_{4}, A_{5}{ }^{k}=B_{1}, B_{2}, B_{3}, B_{4}, B_{5}(k=1,3,5,7)$," Revista Euclides, v. 8, 1948, pp. 383-384. MR 10, 431.
40. A. Gloden, "Zwei Parameterlösungen einer mehrgradigen Gleichung," Arch. Math., v. 1, 1949, pp. 480-482. MR 11, 82.
\rightarrow A. Gloden, "Parametric solutions of two multi-degreed equalities," Amer. Math. Monthly, v. 55, 1948, pp. 86-88. MR 9, 331.
41. A. Moessner, "Alcune richerche di teoria dei numeri e problemi diofantei," Bol. Soc. Mat. Mexicana (5), v. 2, 1948, pp. 36-39. MR 10, 592.
42. A. Moessner, "On equal sums of like powers," Math. Student, v. 15, 1947, pp. 83-88. MR 11, 500.
43. S. Sastry \& T. Rai, "On equal sums of like powers," Math. Student, v. 16, 1948, pp. 18-19. MR 11, 391.
44. G. Palamà, "Diophantine systems of the type $\sum_{i=1}^{p} a_{i}{ }^{k}=\sum_{i=1}^{p} b_{i}{ }^{k},(k=1,2, \cdots, n, n+2$, $n+4, \cdots, n+2 r), "$ Scripta Math., v. 19, 1953, pp. 132-134. MR 15, 199.
45. A. Moessner \& A. Gloden, "Einige Zahlentheoretische Untersuchungen und Resultate," Bull. Sci. École Polytech. de Timişoara, v. 11, 1944, pp. 196-219. MR 9, 9.

[^0]: * This solution was found by A. Moessner [35].

[^1]: * All solutions shown are ($k . m . n)_{1}$ unless otherwise marked.

